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The mechanics of inhomogeneous turbulence in and adjacent to interfacial layers
bounding turbulent and non-turbulent regions are analysed. Different mechanisms are
identified according to the straining by the turbulent eddies in relation to the strength
of the mean shear adjacent to, or across, the interfacial layer. How the turbulence
is initiated and the topology of the region of turbulence are also significant factors.
Specifically the cases of a layer of turbulence bounded on one, or two, sides by a
uniform and/or shearing flow, and a circular region of a rotating turbulent vortex
are considered and discussed.

The entrainment processes at fluctuating interfaces occur both at the outer edges
of turbulent shear layers, with and without free-stream turbulence (e.g. jets, wakes
and boundary layers), at internal boundaries such as those at the outside of the
non-turbulent core of swirling flows (e.g. the ‘eye-wall’ of a hurricane) or at the
top of the viscous sublayer and roughness elements in turbulent boundary layers.
Conditionally sampled data enables these concepts to be tested. These concepts lead
to physically based estimates for critical modelling parameters such as eddy viscosity
near interfaces, entrainment rates, maximum velocity and displacement heights.

1. Introduction
In the past 50 years (1955–2005), the main development in turbulence research has

been the measurement, computation and analysis of the different types of coherent
eddy motions and their distributions, especially in inhomogeneous flows (Holmes,
Lumley & Berkooz 1996). General concepts derived from these studies have helped
to provide physically plausible explanations of the quantitative statistical results
obtained by Kármán, Prandtl, Taylor, Richardson, Kolmogorov and Obukhov in
the previous 40 years (1915–1955). In fact Richardson (1922), Prandtl (1925) and
Kolmogorov (1941) themselves used explicit models of eddy motion to justify and
illustrate their ideas. Quantitative experimental studies of eddy motion only became
possible through the use of conditional sampling and improved flow visualization
methods (e.g. Hussain 1986). These data lead to dynamical studies of the eddies in
turbulent flows as they move individually and interact collectively (Hunt & Vassilicos
2002). The results of the research on eddy motions have greatly enriched the subject,
especially for the non-specialist through the description and understanding of many
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of the qualitative features of turbulence, both those observed in nature and those
resulting from human activities ranging from engineering, to cooking and to the fluid
motions of our own bodies (e.g. Lugt 1983). Many practical benefits have resulted
from this greater understanding in every branch of engineering and some branches
of medicine (e.g. Hunt 1985; Pedley 1980).

The Journal of Fluid Mechanics has played an important role in encouraging and
publicizing complementary ways of studying both homogeneous and inhomogeneous
turbulence. Some of the papers were quite controversial (e.g. Chandrsuda et al. 1978)
and in one case involved not only many more than the usual number of referees in the
editorial process, but also an advisory footnote about the paper (Long & Chen 1981)!
New and tentative results were published and topical conferences were reviewed. The
old flimsy issues of JFM used to be passed around laboratories and discussed in tea
rooms and lunch queues, as they were at the Central Electricity Research Laboratories
(where J.C.R.H. was working 1968–1970). The equivalent discussions now happen on
the internet in one form or another. In one issue in 1968 there were two papers on
Professor Scorer’s conjectures (which have still not been resolved) about the ‘turbulent
diffusion’ of angular momentum in rotating flows. They demonstrated the value of
simple experiments, one of which involved an Alka Seltzer tablet to produce the
turbulence (Gough & Lynden-Bell 1968). Bretherton & Turner (1968) explained the
importance of this for geophysical fluid mechanics.

There are still many fundamental and interesting problems in fluid mechanics
which are not well understood. One hopes that researchers will continue to convey
the excitement of these studies in their JFM papers as well in articles in the popular
scientific press such as Nature, New Scientist, etc. Simple theoretical and experimental
methods are still necessary, but we now have the great advantage of using detailed
numerical computation and three-dimensional velocity measurement systems on scales
from the microscopic to the galactic. These techniques enable many aspects of the
flow to be described, including variability over large numbers of similar events.
Sometimes they have confirmed the imaginative predictions of earlier generations of
fluid mechanicists (for example the form of cyclonic storms first depicted in the 1860s
correspond very closely to the satellite pictures of the 1950s). On other occasions, the
new data have given rise to surprises; the example given in this paper is the sharpness
of turbulent interfaces.

Here we review the aspects of eddy motion that occur at boundaries between
regions of turbulent and non-turbulent motion such as the outer edge of jets and
wakes. These regions of very inhomogeneous turbulence play a critical role in many
engineering and natural flows that is now beginning to be appreciated (e.g. Hunt et al.
2001). In some previous models it was assumed that the dynamics of the interface
was determined by the ‘nibbling’ action of small-scale turbulent eddies (e.g. Corrsin
& Kistler 1955) while others were based on the ‘engulfing’ motions of large-scale
eddies and the ‘elastic’ dynamics of turbulence distorted by these eddies (Townsend
1966). Hypotheses about the jump in the large-scale vorticity were made in these
models (e.g. Kovasznay, Kibens & Blackweld 1970). With the aid of particle imaging
velocimetry (PIV) systems and large computers running at mega- and tera-flops speed,
the flow and scalar fields in these ‘super-layers’ can be measured and computed in
sufficient detail to test the various hypotheses and theoretical models based on them
(Westerweel et al. 2002, 2005; Bisset, Hunt & Rogers 2002; Mathew & Basu 2002).

The turbulence has special features in these thin layers which differ from those in
the interior of most shear flows. In the interior region the length scale of the turbulent
eddies Lx is generally smaller than the distance Λ over which the turbulence and



Mechanics of inhomogeneous turbulence and interfacial layers 501

mean velocity change. Typically Λ is about 1/4 of the shear layer thickness, l. By
contrast adjacent to these thin ‘super-layers’ of thickness lI the turbulence is very
inhomogeneous since the eddies controlling their dynamics are comparable to l (where
l � lI ). At the same time the layers are fluctuating and therefore have to be analysed
in a coordinate frame moving with the interface (defined over a suitable length
scale that is large compared to lI ). This invalidates the conventional statistical models
based on assuming relations between mean gradients of turbulent fluxes and gradients
of mean velocity/scalar (Durbin & Petterson Reiff 2000; Hunt & Savill 2002). An
important consequence is that Reynolds-averaging methods and models are not valid
near these layers because the relations between the ensemble mean and fluctuating
components of the velocity field are quite different to those in less inhomogeneous
regions of the flow.

Understanding the dynamics of these thin layers is also relevant for analysing
the dynamics of coherent eddy motions both in homogeneous and inhomogeneous
turbulence. At high Reynolds number such eddies tend to be defined by sharp
interfaces separating highly turbulent and low-turbulence regions, where intense shear
layers are formed. Similar discontinuities occur in scalar concentrations (Warhaft
2000). Within turbulent flows these layers appear as a form of interior intermittency
(Vassilicos 2001). In the inhomogeneous regions between high- and low-intensity
turbulence the small eddies in these intense shear layers strongly influence the speed
at which the layers move outwards into the non-turbulent or low-turbulence regions
of flow. This is the boundary entrainment velocity Eb (Turner 1986).

For some flows, such as jets and plumes, where the mean velocity in the turbulence
is much greater than in the non-turbulent region and Eb is finite, and turbulent flow
drives a mean velocity into the turbulent region – this is the relative entrainment
velocity Ev . Estimates of the values of Ev and Eb in terms of other flow parameters
are used for calculating many types of turbulent shear flows that occur in practice.
However, there is no general theory or even empirical rule for determining these
‘velocities’ as circumstances change, for example when the level of turbulence inside
or outside the region is suddenly changed (Bhat & Narasimha 1996; Ching, Fernando
& Robles 1995; Hunt 1995) or when the layer is positioned between a cylindrical
region of static fluid and a rotating annulus of highly turbulent flow, such as a
hurricane (e.g. Bengston & Lighthill 1982). Interfaces with inhomogeneous turbulent
flows occur widely in geophysical flows, notably ‘geostrophic’ and gravity current
fronts (Britter & Simpson 1978).

The paper is structured as follows: in § 2, we review the major results from linearized
analysis near sharp interfaces bounding turbulent and non-turbulent regions. The
kinematics and dynamics of interfacial layers bounding turbulent regions are described
in § 3, before applying these new results to swirling shear and boundary layers in § 4.
These results are put into a general context in § 5.

2. Turbulence near interfaces and thin vortical layers
2.1. Interfaces adjacent to layers with weak mean shear

Consider an idealized analysis of two regions of fluctuating motion initiated at t = 0,
separated by a fluctuating interface located at x̂3 = 0, where x̂3 = x3 − x3I (t). The
velocity field u = (u1, u2, u3) is irrotational above the interface (figure 1) – we will use
the superscripts +/− to denote processes above/below the interface. For the shear-free
flows (SFL) considered here the turbulence far below the interface is homogeneous,
denoted by u(H ) and the mean velocity U = (U1, U2, U3) is uniform. This homogeneous



502 J. C. R. Hunt, I. Eames and J. Westerweel

x3

x3I

Interior

Exterior

u(+)

u(–)

u(H)

u2
3

U1(t)

–u1u3

u2
1lI

lx

x3ˆ

Figure 1. Showing schematically the inhomogeneous turbulence near the interface (at
x3 = x3I , or x̂3 = 0) between a region of shear-free homogeneous turbulence and irrotational
fluctuations. Note that if the turbulence u(H ) is anisotropic (e.g. with a Reynolds stress) the
inhomogeneity leads to a Reynolds stress gradient and the growth of a mean shear layer U1(t).

turbulence is in a quasi-equilibrium state. The dissipation rate is ε. The mean and
fluctuating components of vorticity are (Ω1, Ω2, Ω3) = ∇ × U and ω = ∇ × u. This
idealized flow situation corresponds approximately to that in a wind tunnel where
there is a grid of bars below x̂3 = 0 and a gauze above this level so that the net
resistance to the flow is the same and the mean velocity uniform (Gartshore, Durbin &
Hunt 1983).

The main features of inhomogeneous turbulence near such interfaces can be studied
by assuming that the adjustment of these fields is ‘rapid’, taking place on a time scale
TD , which is shorter than the Lagrangian time TL = Lx/u0 over which the large eddies
evolve, where Lx is the integral scale of the turbulence. Consequently, the broad
structure of turbulent eddies near the interface can be estimated using approximate
linear calculations. In shear-free flows, unlike sheared flows, the fluctuating vorticity
of the turbulence is not affected over this time scale. Also the external field is simply
irrotational, following Phillips (1955) and Carruthers & Hunt (1986), so that

u(+) = ∇φ(+), u(−) = ∇φ(−) + u(H ), (2.1)

where |∇φ(±)| → 0 as x̂3/Lx → ±∞. To satisfy continuity,

∇2φ(±) = 0. (2.2)

The interfacial matching conditions for flows in which viscous effects are neglected
for the largest scales are continuity of the velocity normal to the interface and
pressure, p, across the fluctuating boundary between the interior and exterior regions.
The condition reduces to u3 and pressure, p (or φ), being continuous at x̂3 = 0.
Because the equations and boundary conditions are linear, the effects of varying
the spectrum can be analysed by generalizing the Fourier methods of Batchelor &
Proudman (1954).

The main results of relevance to the dynamics of these interfaces in unstratified
flows are:

(i) Over a distance Lx , below the interface the mean squared value of the velocity

fluctuations (u′2
1 ,u′2

2 ) parallel to the interface increase by 25% above the homogeneous

level, while the mean squared value of the velocity fluctuations (u′2
3 ) normal to the

interface component decreases (by 50%). Just above the interface, u′2
1 ,u′2

2 are reduced
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to 25%, showing that there is a discontinuity in eddy motions parallel to the interface
caused by the vortex lines normal to the interface turbulence forming vortex sheets
at the interface.

(ii) As Phillips (1955) showed, and many experiments have since confirmed, the
variances of all velocity components are determined by the largest eddy scales and
decay with normal distance in the external layer approximately in proportion to√

u′2
i ∼ Ax̂−4

3 , for x̂3 � Lx . This decay is not sensitive to the form of the low-

wavenumber energy spectrum, provided E(k) ∼ CkN , where N is an integer greater
than or equal to 4 and C ∼ u2

0L
(N+1)
x (see Davidson 2004). The linear analysis of (2.1),

(2.2) shows that A ∼
∫

E(k)/k4dk ∼ C/L(3−N)
x ∼ u2

0L
4
x .

(iii) The spectrum of velocity fluctuations changes sharply across the interface.
Below the interface, there is a fully developed spectrum with a Kolmogorov inertial
range extending to the smallest scales of order (ν3/ε)1/4, where ε is the dissipation
rate and ν the kinematic viscosity. Above the interface, the energy spectrum is
concentrated at low wavenumbers so that the length scale of the most energetic
straining motions is of order Lx . However, since there is a ‘jump’ in the parallel
components of velocity across the interface, a fluctuating viscous layer is a generated.
Because the straining motions distorting this layer are of a relatively large scale (of
order Lx), the layer thickness is comparable to the Taylor microscale, i.e. (Lx/u0)

1/2.
No detailed measurements are yet available.

The dynamics near the interface are significantly changed if the interior turbulence
u(H ) is anisotropic. The distortion of such turbulence near a rigid plate has been
analysed and measured by Nagata et al. (2005) and Wong (1985), and can be
extended to account for the distortion of anisotropic turbulence near the interface.
When turbulence impinges onto an interface or a rigid boundary, there are gradients
in the normal Reynolds stress (i.e. ∂τij /∂xj , where τij = −〈uiuj 〉). For isotropic
turbulence these do not generate a mean velocity field. However, if the curl of
the Reynolds stress gradients is non-zero, this amplifies the mean vorticity Ωi , i.e.
∂Ωi/∂t = εijk∂τkm/∂xj∂xm. In this case, for anisotropic turbulence impinging onto an
interface, Ω2 = ∂U1/∂x3 and thence U1 gradually increase below the interface, with
a discontinuity in U1 at x̂3 = 0. This is illustrated by a model calculation, in which
there is a mean Reynolds stress (normalized on the density) τ13 = −〈u1u3〉 below
the interface. Consider a two-dimensional single Fourier mode of the homogeneous
turbulence below the interface:

u
(H )
1 = u0 sin ψ cos(−k1x1 + k3x̂3), u

(H )
3 = u0 cos ψ cos(−k1x1 + k3x̂3), (2.3)

where k1 = k̃ cos ψ , k3 = k̃ sin ψ are the wavenumbers in the x1-, x̂3-coordinates. Then
applying the same equations and forms of solution as in (2.1) and (2.2) it follows that
τ13(x̂3) = − 1

4
u2

0 sin 2ψ − 1
2
u2

0 cos ψ sin(k3x̂3 − ψ)e|k1|x̂3 . Note that τ13 decreases over a
distance Lx from its homogeneous value to zero at and above the interface. For the
simple model perturbation of (2.3), the mean profile becomes

U1 = − 1
4
u2

0t k̃ sin 2ψ cos(k3x̂3 − ψ)e|k1|x̂3, x̂3 < 0, t > 0. (2.4)

Note that this mechanism of generating a mean flow is similar to that found when
waves approach a beach or a critical layer at an angle. Despite the neglect of
significant non-linear effects, these linear rapid distortion analyses of inhomogeneous
turbulent flows are essentially local linearizations of complex flows for which physical
and theoretical justification have been given by Hunt & Carruthers (1990) and



504 J. C. R. Hunt, I. Eames and J. Westerweel

(b)

Interior

Exterior

(a)

lx3

Lx
Lx

U0

u0

u0

U0

U0 –  ∆U0

lI

lI

l
x3

x3I

x3x3 = 0 x3 = 0ˆ

x3I

x3ˆ

u(H) u(H)

Figure 2. (a) Boundary-shear layers (BSL) and (b) free-shear layers (FSL) where interior
turbulence induces rotational fluctuations in the shear layer of thickness l. In case (b),
irrotational fluctuations occur in the exterior region.

Magnaudet (2003). Similar effects occur whether these fluctuations are space filling
(e.g. Fourier waves) or compact (e.g. vortices).

2.2. Turbulence near layers with a strong mean shear

Now consider a similar idealized flow involving interactions between large-scale
turbulence and adjacent, external, regions where initially there is no turbulence. Two
different flow situations are considered, broadly categorized as either boundary-shear
layers (BSL – figure 2a) or free-shear layers (FSL – figure 2b), depending on whether
the shear layers are bounded by a rigid boundary or by an external layer in which
the mean velocity is uniform (see figure 2b). Irrotational velocity fluctuations (u(+))
generated in the shear layer are present in this external region (Hunt & Durbin
1999). In both cases the mean velocity profile in the shear layer is unstable to small
disturbances which become non-linear and develop into turbulent eddies. These grow
in scale until they are as large as the thickness of the shear layer. Through entrainment
(discussed below in § 3) the shear layer thickness l grows with time. There are sharp
interfaces with thickness lI 
 l separating the shear layer from the external and lower
turbulent regions. When there are weak fluctuations in the lower layer with length-
scales greater than l, they interact linearly with the layer. If they are large enough (see
below) they may affect fluctuations throughout the layer. In the case of FSL, they
generate fluctuations on the other side of the layer where x̂3 > l. Linear dynamics of
wave-like disturbances and vortical eddies determine the broad spatial structure of
the fluctuations both near interfaces (§ 2.1) and where the turbulence is homogeneous
in thick shear layers (e.g. Townsend 1976).

An inviscid analysis of these idealized flows (approximately valid for large Re =
u0Lx/ν � 1) combines a perturbation analysis for interactions across interfaces (as
in § 2.1) and a linear rapid distortion approach for the development of fluctuations in
shear flows. The analysis for the energy-containing eddies is approximately valid for
distortion times shorter than the Lagrangian time TL = Lx/u0. These studies show
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how the amplitude of externally imposed velocity fluctuations generally decreases
in the turbulent region near the interface at x̂3 = 0. But above the interface, their
structure depends on how the fluctuations in the shear layer are initiated.

In the turbulent layer (x̂3 < 0) (as in § 2.1), the flow consists of homogeneous
turbulence and irrotational fluctutations, i.e.

u(−) = u(H ) + ∇φ(−). (2.5)

We consider the case where the shear layer is thick enough that l � Lx . Linearized
momentum equations are valid in the shear layer 0 < x̂3 < l, for t 
 Lx/u0, namely(

∂

∂t
+ U · ∇

)
u + u · ∇U = −∇p, (2.6)

where p is the pressure normalized by density. Note that for uniform shear this
reduces, for the vertical component, to(

∂

∂t
+ U · ∇

)
∇2u3 = 0. (2.7)

For FSL in the upper layer,

u(+) = ∇φ(+). (2.8)

Given u(H ) in the turbulent layer, the velocity fluctuations in the other layers are
determined by the above equations and initial, matching and boundary conditions.
At x̂3 = 0, u3 and p are continuous. For BSL, an additional kinematic constraint,
u3 = 0 at x̂3 = l, is applied.

2.2.1. Boundary-shear layers (BSL)

In the first type of boundary-shear layer (BSL), velocity fluctuations in the upper
layer (x̂3 > 0) are initiated in a time-dependent flow at t = 0. Equivalently they
could be generated in a spatially developing flow for x1 > 0 by a turbulent flow
passing below a rigid plate extending from −∞ < x1 < 0 (where the plate produces
a negligible wake). Initially the velocity fluctuations above and below the interface
are described by the shear-free analysis of § 2.1. But as time t (or x1) increases, the
mean shear in the layer amplifies the horizontal fluctuations u1, u2 and the Reynolds
stress −〈u1u3〉. By contrast (from (2.7)), the vertical fluctuations do not decay, as
they do (in linear theory) when homogeneous rotational disturbances perturb a
uniform shear layer (e.g. Townsend 1976). This is a simple demonstration of how
inhomogeneous turbulence can have features that differ qualitatively from those in
uniform shear flows. These interfacial processes were broadly confirmed by the wind
tunnel experiment of Gartshore et al. (1983).

In the second type of BSL flow, the turbulence is externally forced with no velocity
fluctuations in the shear layer at t = 0. For example this might be a laminar boundary
layer on a plate (at x̂3 = l) where external turbulence u(H ) is generated in the space
below x̂3 < 0, or where vortices propagate towards the boundary layer (see figure 2a).
Linear theory (e.g. Lighthill 1957) and computations show that fluctuations ul on a
scale l are directly related to the pressure fluctuations in the turbulent layer p(−);
approximately ul ∼ p(−)/U1(x3). If the eddies or waves travel at the uniform external
flow speed where U1 = U0, the linear inertial terms induce a fluctuating pressure
of order u0(U0 − c) (Grosch & Salwen 1978; Craik 1991). Weak nonlinear inertial
terms exist where p(−) ∼ u2

0. Consequently the fluctuations in the shear layer (x̂3 > 0)
are very weak, i.e. ul ∼ u2

0/U1(x3) (Jacobs & Durbin 1998). A physically analogous
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mechanism occurs when a vortex approaches such a layer: the vortex distorts the
vorticity of the layer and blocks the motion of the vortex towards the layer (Hunt
& Durbin 1999). This means that the interface is effectively acting as a barrier,
which therefore makes the velocity fluctuations anisotropic as eddies and vortices
approach the interface; the vertical velocity u3 decreases while the horizontal velocity
components are increased. Therefore a fluctuating vortex sheet is created which as
a result of nonlinear effects soon becomes unstable leading to spots of turbulence
propagating into the shear layer (Wu et al. 1999). This phenomenon, which accelerates
the transition to turbulence of laminar boundary layers, has been used to improve
the design of turbomachinery (Hodson & Howell 2005).

2.2.2. Free-shear layers (FSL)

Now consider the interaction between the external turbulence (with r.m.s. velocity
u0) and a free-shear layer (figure 2b) where the mean velocity U0 − 	U0, in the upper
turbulent free-shear layer differs from that in the lower turbulent layer by 	U0. The
magnitude of the mean velocity difference is much greater than the r.m.s. turbulence
in the lower layer, i.e. 	U0 � u0.

In the idealized calculation we now discuss it is assumed that the shear layer
is much thinner than the turbulent length scale (i.e. l 
 Lx), and behaves like a
perturbed vortex sheet. The mean vorticity Ω2 in the layer is much greater than the
strain rate of the energy-containing eddies, i.e. |Ω2| ∼ 	U0/l � u0/Lx . Nevertheless
the thickness and displacement of the layer fluctuates with x1, x2, t . The layer is of
course exponentially unstable to small disturbances, causing alternating thickening
and thinning of the vortex sheet. Where the former occurs characteristic vortex
structures develop (Batchelor 1967) which determine the growth of the mean thickness
of the layer. The thickening/thinning mechanism is also relevant to understanding
how the shear layer responds to large-scale external fluctuations (Hunt & Durbin
1999). To illustrate these processes, consider a single Fourier mode of the turbulence
travelling at speed c parallel to the mean flow, e.g.

u
(H )
3 = u0e

i(k1(x1−ct)+k3x̂3), x̂3 < 0. (2.9)

Because the layer is thin (as with the analysis of the Kelvin–Helmholtz instability) the
vertical velocity u3 is constant within the layer while u1, u2 vary linearly across it. The
irrotational flow field (2.8) in the upper layer is determined by ensuring continuity
of u3 and pressure p. Solving the coupled equations shows that travelling eddies in
the turbulent flow produce irrotational fluctuating velocities in the upper region that
travel in phase and do not grow in amplitude. If the external eddies are large enough
this quasi-steady interaction is independent of the growth of fluctuations within the
free-shear. A linear analysis for two-dimensional fluctuations shows that the ratio of
the standard deviations of the velocity fluctuations in the upper layer to that in the
turbulent flow far from the interface is√

u
(+)2

3√
u

(H )2

3

(x̂3 ∼ l) =
b

2

∣∣∣∣	U 2
0 − 4c2

r

	U 2
0 + 4c2

r

∣∣∣∣ (2.10)

(Hunt & Durbin 1999), where cr = c − (U0 − 	U0/2) is the wave speed relative
to the mean speed in the interface. The ratio (2.10) is zero for c = U0, i.e. when
the vortex sheet shelters the perturbations. If it is non-zero it only depends weakly
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on the anisotropy of the turbulence, as shown by the form of the coefficient b =

(u(H )
1

2
+ u

(H )
3

2
)/2u2

0.
This quasi-steady blocking mechanism can also be studied by considering the

thickening and thinning of the vortex sheet as a vortex moves. Most flow disturbances
have an impulse (or in Charles Dickens’ (1865) words, ‘impulsion’, the literary concept
preceding Kirchhoff’s (1869) analysis by 4 years!). Therefore an equivalent impulse
must be generated by the deformation of the sheet, according to the general formula

I = 1/(N − 1)

∫
x × ωdx

where the integral is taken over the volume occupied by the sheet and N = 2, 3
depending whether the sheet is one- or two-dimensional (e.g. Batchelor 1967). This
analysis demonstrates how the greater circulation associated with the thicker regions
of the sheet can induce a vertical velocity component opposite to that of the impinging
vortex, so that depending on the speed of the vortex parallel to the sheet, (i.e. the
value of c/U0) the sheet may or may not block the vertical velocities associated with
the vortex. As in the case of BSL, the blocking of the vertical fluctuations leads to an
amplification of the horizontal velocity components at the interface where there is a
weak mean shear flow U (x3) below the vortex sheet, such that |dU/dx3| � U0/Lx , it
can be shown (Hunt et al. 2006) that the mean shear is amplified by vortex stretching
until it reaches a steady state. This depends on the shape of the impinging eddies.
For typical shapes it can be shown that dU (x3)/dx3 ∝ U0/|x3|.

This shear sheltering/blocking mechanism also affects the distribution of scalars
in these inhomogeneous flows. For example, if there is a vertical gradient of mean
concentration such that C(x3) increases away from the interface, then as the vortical
eddy approaches the interface and as it displaces fluid it transports the scalar with
it. But the scalar perturbation is confined to the region around the eddy whereas the
irrotational fluctuations induced around the vortex can amplify the vorticity in the
shear layer (e.g. Wu et al. 1999). In this case, momentum can be transported more
effectively than a scalar. This is an exceptional phenomenon in unstratified turbulent
flows (see Townsend 1976), but has been observed in the measurements of Smedman
et al. (2006) for a boundary layer flow where eddies impinge onto a rigid boundary.

3. Kinematics and dynamics of interfacial layers
Observations, measurements and detailed numerical simulations of turbulent shear

flows (e.g. Westerweel et al. 2002, 2005; Mathew & Basu 2002; Bisset et al. 2002)
show the complex highly distorted interface bounding the edge of turbulent regions
(see figure 3). The main difference between the idealized flat interface of § 2 and
observations, is that periodically the interface forms cusps that point inwards towards
the turbulent region (x̂3 < 0) and smooth bulges in the opposite direction. The
local processes associated with these inward cusps or outward bulges are significant
for the overall flow because they affect the transport of material (and scalars) into
the turbulent region from outside (x̂3 > 0). To study these processes, the interfacial
processes need to be examined in a coordinate system moving with the interface, as
we go on to discuss.

3.1. Kinematics and jump conditions at interfacial shear layers

Many features of the overall dynamics of shear layers can be explained in terms of
the mechanisms in the interfacial layers. This is not the usual methodology, although
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Figure 3. Numerical simulations and experimental observations of the interface bounding a
wake and a jet. (a) Edge of (i) an unforced axisymmetric wake and (ii) a weakly forced wake;
b is the mean radius of the wake. The contour is a threshold of vorticity (from Bisset et al.
2002). (b) Experimental observations using LIF of the distribution of a passive scalar in a
three-dimensional turbulent jet (from Westerweel et al. 2005). The jet is flowing from the left-
to the right-hand side of the figure.
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Figure 4. Schematic diagram of two stages in the development of a turbulent jet (or plume)
moving in an external stream with mean velocity U0 and r.m.s. turbulence u0. (a) In the initial

stage, the mean excess velocity {	U1}A and the turbulence 	u2
1 in the jet are greater than u0.

Note the difference between the inward entrainment velocity Ev and the outward entrainment
velocity Eb . (b) In the far downstream stage, the jet has broken into eddies, but the momentum
flux is unaffected. The entrainment velocity is Ev = 0, while Eb �= 0, where − − −− denotes
the edge of the jet.

it was the essential concept in G. I. Taylor’s (1958) theoretical model for turbulent
jets where he focused on the mean normal ‘entrainment velocity’ Ev = −〈u3〉, where
〈·〉 is the ensemble mean which is directed into the turbulent region (see figure 4). For
a circular jet propagating in the x1-direction, mass conservation requires

Ev =
1

2πR

dQ

dx1

, (3.1)

where the volume flux Q is defined by

Q = 	U0πR2, (3.2)

and where R is the mean jet radius and 	U0 is the difference between the mean
velocity in the jet and the external flow. Morton, Taylor & Turner (1956) introduced
the assumption for turbulent jets and plumes that the ratio

αv =
Ev

	U0

(3.3)

is constant. However (cf. Hunt 1995; Agrawal & Prasad 2004; Bhat & Narasimha
1996), this coefficient is not constant when jets are perturbed by body forces or
external turbulence.

A critical measure of the interfacial dynamics is the average speed Eb of the
boundary interface between the turbulent and non-turbulent flows:

Eb =

〈
dX3I

dt

〉
, (3.4)

where the derivative is a Lagrangian following the random motion of fluid particles
in the interface. Here X3I is the instantaneous position defined as the value of x3

where relevant properties of the flow or a scalar field are invariant. For example, the
interface position can be defined as where the difference between the average value

of the variance just outside the interface 〈u2
i 〉I and the r.m.s external turbulence (u2

i )0,
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normalized on the square of the difference 	u2
0 between the r.m.s levels in the two

regions, is small, say σ̃ 2
u = 0.1, e.g.

〈u2
i 〉I − (u2

i )0

	u2
0

(x3 = X3I ; x1, t) = σ̃ 2
u . (3.5)

The interface position may also be defined in terms of conditional mean velocity or
scalar differences, e.g. see figure 3(a) (Bissett et al. 2002).

In free-shear layers (FSL), there is a jump 〈	U1I 〉C in the conditional mean velocity
〈U1I 〉C across the fluctuating interface, at x3 = X3I , and a mean shear flow 〈Us〉C

below the interface. This is equivalent to a delta-function in the vorticity field, i.e.
〈	Ω2〉C = 〈	U1I 〉Cδ(x3 − X3I ). The total conditional velocity is

〈U1〉C = U0 − 〈	U1I 〉C + 〈Us〉C, x3 < 〈X3I 〉, 〈U1〉C = U0, x3 > 〈X3I 〉. (3.6)

Numerical simulations (Bisset et al. 2002) and experiments (Westerweel et al. 2002,
2005) show that in the limit of very high Reynolds numbers there should be a jump in
the conditionally averaged Reynolds stress 〈	τI 〉C across the interface which drives
the mean acceleration of the local flow associated with the interface moving outwards
(see figure 4a). For a local dynamical balance in a steady frame moving with the
interface,

Eb〈	UI 〉C = 〈	τI 〉C (3.7)

(see Westerweel et al. 2005, and § 2.2). In the interior of the shear layer, where there is
locally a homogeneous turbulent shear flow, the magnitude of 〈	τI 〉C is determined
by the mean shear and the local turbulent eddy viscosity νT (Townsend 1976),

〈	τ 〉C ≈ νT

〈
∂Us

∂x̂3

〉
C

, (3.8)

where νT = 0 for x3 > 〈X3I 〉. By averaging the relation between the mean shear
stress (in fixed coordinates) 	τ (x3) and mean shear ∂U1/∂x3 over all the fluctuating
positions of the interface, the usual eddy viscosity at fixed values of x3 can be derived
(Westerweel et al. 2005), i.e.

〈νT 〉 ≈ 	τ/
∂U1

∂x3

. (3.9)

Interestingly this ratio is approximately constant, as assumed by Prandtl (1925) and
in many basic engineering models. But (3.9) is inconsistent with Reynolds-averaged
stress models (see Hunt et al. 2001) where it is assumed that 〈νT 〉 tends to a very
small value in the exterior region (but usually larger than ν).

When there are strong local body forces (or obstructions), the jump conditions
are quite different and can determine the whole flow structure. In strongly rotating
or stratified flows the eddy diffusivity and the boundary entrainment velocity can
be greatly reduced, i.e. νT /u0l 
 1 and Eb/u0 
 1 (Turner 1973). Then the jump
in shear stress across the interface is negligible, even though there is a jump in the
mean velocity, 〈	U1I 〉C . This requires that the thickness of the layer has to be large
enough for the turbulence generated to be sufficiently distorted by body forces and
〈	τI 〉C/u2

0 
 1. A different mechanism operates in shear flows in cases where mean
and fluctuating body forces extend into the turbulent layer by a distance lBI , the
entrainment velocity (Eb/u0) is zero, but the dynamical balance leads to a jump in
the shear stress 〈	τI 〉C = −〈fI 〉ClBI (Coceal & Belcher 2004; Grachev & Hunt 2006).
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3.2. Dynamics and entrainment at free surfaces in unidirectional shear layers

The overall dynamics for unidirectional shear layers with no external pressure
gradients is first of all determined by the growth of the mean momentum flux
(M),

dM

dx1

= F1 =

∫
A

f1dA, (3.10)

and the volume flux Q (see (3.1)). Here the cross-sectional area A spans the
jet/plume/boundary layer and F1 is the integral of the mean body force f1 over
the jet acting in the flow direction.

For a statistically steady free round jet placed in an external flow with uniform

velocity U0, no pressure gradient and turbulence u2
0i , the excess momentum flux is

determined by the mean velocity and the excess turbulence, namely

M =

∫
A

(	U 2
1 + 	u2

1) dA = Aµ{	U1}2
A(1 + λ2) ∼ A{	U1}2

A(1 + λ2), (3.11)

where {	U1}A = (1/A)
∫

A
	U1dA, 	U1 = U1 − U0, 	u2

1 = u2
1 − u2

01 (overbar
denotes an ensemble average at a fixed location), λ denotes the average turbulence

intensity defined by λ2 = (
∫

A
	u2

1dA)/(
∫

A
	U 2

1 dA) ∼ u2
1/{	U1}2

A, and the O(1) profile

parameter µ = (
∫

A
	U 2

1 dA)/A{	U1}2
A. The physical significance of the contribution

to the momentum flux produced by turbulence is often overlooked.
M , Q and the external entrainment velocity Ev are now related to the mean radius

R(x1) and the boundary entrainment velocity Eb (without necessarily assuming self-
similarity profiles, e.g. Townsend 1976). By its definition (3.1), Eb = {	U1}AdR/dx1,
for a jet. From the physics of the interface Eb ∝ {	U1}A so that dR/dx1 ≈ αb,
where αb ≈ 0.1 is constant (Turner 1973). The external entrainment velocity (which
is directed inwards) is calculated from continuity (see (3.1)) and is usually expressed
by a coefficient αvj in terms of the difference in the mean velocity inside and outside
the shear layer, e.g. for a circular jet Ev = αvj {	U1}A, A = πR2, where

αvj =
1

2πR{	U1}A

d

dx1

(A{	U1}A). (3.12)

By considering the momentum flux in (3.11), M = A{	U1}2
A(1+ λ2) is constant. Then

from (3.12),

αvj =

√
1 + λ2

2

d

dx1

(
αbx1√
1 + λ2

)
. (3.13)

Therefore if λ2 is constant, as in a round jet with no external turbulence, αvj = αb/2.
In the presence of external turbulence λ2 is constant near the source of a jet where

the level of turbulence exceeds the external level. But further downstream λ2 increases
beyond a transition point (x∗

1 , say) when the intensity of jet turbulence decreases to a
level comparable to the external turbulence (Ching et al. 1995). For example, if

λ2 = λ∗2
(1 + (x1 − x∗

1 )H (x1 − x∗
1 )/R

∗), (3.14)

where H (·) is the Heaviside-step function, then for x1 > x∗
1 ,

αvj =
αb

2

[
1 − λ∗2

x1/R
∗

2[1 + λ∗2(1 + (x1 − x∗
1 )/R

∗)]

]
. (3.15)
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Eb/{	U1}A Sign(Ev) |Ev/Eb|
Circular jet unperturbed ∼1 >0 ∼1/2
Circular jet perturbed ∼1 >0 <1/2
Wake ∼1 >0 
1(∼{	U1}A/U0)
Boundary layer ∼1 >0 
1(∼{	U1}A/U0)
Swirling shear layer 
1 − −
Wall perturbed boundary layer ∼1 − −

Table 1. Entrainment velocities, Eb , Ev , for different types of shear layers.

Thus αvj/αb has a step decrease at x1 = x∗
1 and then asymptotes to a value of 1/4

when x∗
1/R

∗ � 1. This result demonstrates why in jets and plumes in the presence of
free-stream turbulence, the ratios αvj/αb and consequently Ev/Eb or Ev/{	U1}A are
not constant and can decrease quite suddenly when extra turbulence is introduced
through external or internal forcing (e.g. a cloud rising above the level at which
condensation occurs or a jet with combustion). Laboratory experiments confirm the
sensitivity of entrainment to the type of forcing (e.g. Agrawal & Prasad 2004; Bhat &
Narasimha 1996). The physical reason for the change in this ratio is that progressively
more of the momentum flux defined by (3.11) is carried by the turbulent eddies.

When u2
0 � {	U1}2

A, the presence of strong external turbulence controls the outward
movement Eb of the interface rather than the turbulence of the jet. Here the outer
boundary diffuses like a passive interface in a turbulent flow, i.e. Eb ∼

√
〈νT 〉/t where

〈νT 〉 ∼ u0Lx and the mean travel time along the jet is t = x/{	U1}A (see (3.4) and
table 1).

4. Application to shear layers
4.1. Swirling shear layers

The physics of unidirectional shear layers has profound implications for shear layers
in swirling flows. To illustrate these processes, consider a layer of fluid rotating at an
angular velocity 2Ω0 lying between a plane at x3 = 0 and a free surface (or inversion
layer) at height x3 = H . Within a cylindrical region of radius R0, intense buoyancy
forces are introduced which drive a mean vertical velocity U3(x3) such that ∂U3/∂x3

is positive over most of the depth of the layer. At the top of the layer the narrow
upward plume is arrested and the buoyant fluid spreads out and circulates downwards
within a wider circular region whose radius is much greater than R0. The vertical
straining motion in the core (r < R0) stretches the background vorticity so that Ω3

is greatly increased (in a laboratory experiment with bubbles Ω3/Ω0 ≈ 7, while in
hurricanes Ω3/Ω0 ∼ 10) (Turner 1966; H. J. S. Fernando & S. A. Smirnov, personal
communication). The dynamics of the vortex depend greatly on the ratio R0/H .

We consider an idealized case (which could be realized in a laboratory) where
R0/H � 1 and the forcing generates a turbulent recirculating motion. This results
in the formation of a forced vortex for r < R0 where Ω3 ≈ Ωv0 and Uθ = Ωv0r .
Outside the vortex the strain rate is significant and leads to a greatly reduced mean
vorticity outside the vortex core (i.e. at t = 0, and for r > R0, Ω3 
 Ωv0 but

Σ12 = ∂U1/∂x2 +∂U2/∂x1 ∼ Ωv0). The energy of the turbulence u2
i is significant where

mean strain and mean vorticity are significant at r ≈ R0 but decreases towards the
centre of the vortex. This state of the vortex rapidly evolves. First, this is because
the turbulence decays in the forced vortex, a theoretical result from Townsend (1976),
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Figure 5. Azimuthial velocity in a turbulent hurricane-like vortex, showing how the
formation of a turbulent interface at r = Rc determines the flow structure. Rv is the outer
radius.

confirmed by the experiments of Vladimirov (1982). Secondly, turbulence is highly
strained and amplified by the mean strain rate Σ12 near r = R0 (Miyazaki &
Hunt 2000; Bassom & Gilbert 1998). Consequently, as explained in § 2, a sharp
interface develops because there is a large radial gradient in turbulence, such that

∂u2
i /∂r � u2

i /R0. This triggers the amplification of the mean vorticity Ω3 ≈ ∂Uθ/∂r .
As with the broad class of interfaces discussed in § 3.1, there is also jump in the
conditionally averaged azimuthal velocity at the edge of the vortex which is equivalent
to a delta-function in the vertical vorticity, i.e. the conditionally averaged vorticity
field is 〈Ω3〉C = Ωv(t)(1 − H (r − Rc)) + 〈UθI 〉Cδ(r − Rc), where Rc(t) is the core radius
which varies with time and Rc = R0 at t = 0. Note that 〈Uθ〉C = Ωvr for r < Rc and
〈Uθ〉C = (ΩvRc + 〈	UθI 〉C)Rc/r for Rc < r < Rv (see figure 5).

In a rotating flow, this peak in vorticity significantly affects the peak mean velocity,
unlike the case of a planar flow. This is because the total angular momentum is

conserved within an outer radius Rv , i.e. I =
∫ Rv

0
rUθdr is constant. Since at t = 0,

I = 1
3
Ωv0R

3
0 +Ωv0(Rv0 − R0)R0, for t > 0, I = 1

3
ΩvR

3
c +(ΩvRc + 〈	UθI 〉C)(Rv − Rc)Rc,

where in an unbounded horizontal domain Rv is increasing slowly with time. The
key element of this integral constraint is that the vorticity amplification increases in
the shear layer, so that 〈	UθI 〉C/ΩvRc grows and Ωv/Ωv0 decreases. This process can
continue until Ωv/Ωv0 tends to zero, but only if the turbulent shear layer at r = Rc

does not move into the stationary core, i.e. dRc/dt = 0. This surprising flow structure,
that is a well-observed characteristic of hurricanes (Bengston & Lighthill 1982), is
possible because in strongly rotating flows Eb/〈	UθI 〉C → 0 as outlined in § 3.1. This
requires that the thickness of the layer l is great enough that rotation suppresses the
turbulent diffusion of vorticity, i.e. l/Rc � u0/〈U0〉 ∼ 1/10. A more detailed study
of this problem (to be published) shows that if Eb/〈	UθI 〉C ≈ 0 but 〈	UθI 〉C �= 0
then the jump in the shear stress is also zero, implying that ∂Uθ/∂r = 0 at r = Rc.
‘Vortex spin up’ caused by sharp shear/turbulence fronts and slantwise convection is
a feature of some intense rotating storms that occur at higher lattitudes, where there
are no hurricanes (Browning 2004).
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4.2. Boundary layers

The outer structure of a turbulent boundary layer is similar to that of a wake (Coles
1956). It is bounded by a fluctuating interface with a conditionally averaged velocity
jump 〈	U1I 〉C (though this interface has not yet been studied quantitatively in the
same detailed manner as those of jets and wakes). Consequently free-stream turbulence
with r.m.s. velocity u0 has a similar effect on these flows as for jets and wakes, namely
that for u0 < 〈	U1I 〉C the exterior turbulence has very little effect because of blocking
by the interfacial layer. But when u0 > 〈	U1I 〉C the whole structure breaks up and
lumps of boundary layer vorticity and scalar diffuse into the external flow (Hancock
& Bradshaw 1989) comparable to the plume experiments of Ching et al. (1995). In
the interior of the turbulent boundary layer where h/5 � x3 � h/2 the integral scale
Lx is less than the distance x3 to the ‘wall’ at x3 = 0, and therefore since the eddies
are not directly affected by the outer interface or the wall, the dynamics are quasi-
homogeneous. However the eddy transport of turbulent energy by inhomogeneity is
a sizeable fraction (∼1/2 − 1/3) of the rate of production of energy (Townsend 1976).
In the presence of large-scale energetic free-stream turbulence these inhomogeneities
are even more significant.

The shear-layer analysis of § 2.2 (see also Hunt et al. 2006) also helps to explain
the structure of the turbulent boundary layer near to the wall (x3 � h/5). First,
the wall blocks the normal component of turbulence (i.e. u3 = 0 at x3 = 0). This
condition is also applicable at the free surface or if the wall moves with the mean flow
and ‘shear-free’ boundary layers. But with a sheared boundary layer, the blocking is
affected by the sharp variation in the mean vorticity which reaches a maximum in the
viscous sublayer whose thickness lvs is of order 10ν/u∗. This is a similar mechanism
to the blocking of free-stream turbulence outside a laminar boundary layer (Jacobs
& Durbin 1998). Note that the sharp maximum in the mean vorticity at this level
is maintained by the amplification caused by impinging vortices. The blocking effect
implies that the eddy length scale in the turbulent flow above the viscous sublayer is
of order (x3 − lvs). This can be confirmed by the weighted two-point cross-correlation

R̂(x3, x
′
3) = u3(x3)u3(x

′
3)/u

2
3(x

′
3) for x3 < x ′

3. It is observed from numerical simulations

that R̂ ≈ f (x3/x
′
3), but R̂ → 0 where x3 � lvs . This sheltering mechanism triggers

the bursting phenomena at the top of the viscous sublayer as the fluctuating vertical
shear ∂u1/∂x3 builds up (e.g. Blackwelder & Kaplan 1976).

This mechanism is sensitive to the straining of vorticity by eddies at the top of
the viscous sublayer and to the profile of the layer. This provides a quantitative
explanation for the reduction of mean shear by the effects of long-chain molecules
(Lumley 1973; Ptasinski et al. 2003) and of the perpendicular magnetic field in a
conducting medium. This concept of ‘blocking’ or reduced length scale caused by
the viscous sublayer has been used by Launder (2004) to correct Reynolds stress
transport models for the effect of lower Reynolds number near a wall. It can be used
directly to provide a formula that smoothly and simply matches the viscous sublayer
to the log layer namely

U1 =
u∗

κ

[
log

(
x3 − lvs

ν/u∗

)
+ B

]
, for x3 > lvs, (4.1)

U1 = u∗(x3/(ν/u∗)), for x3 � lvs; (4.2)

κ(= 0.4) is von Kármán’s constant, u∗ is the friction velocity and B is a constant (see
figure 6). In Prandtl’s log-law formulation, lvs = 0 and there is no smooth matching
with the viscous sublayer. The logarithm formula is only correct to about 10% for
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Figure 6. Comparison between a displaced log-law formulation (equations (4.1), (4.2)),
Prandtl’s log-law and experimental measurements (denoted by ×) of the mean velocity in
a turbulent pipe flow at Re = 17 500, where x3 is the distance from the pipe wall.

x3 � 30ν/u∗. Craft et al. (2002) have developed new wall functions which essentially
reproduce (4.1) and (4.2) and are demonstrated to provide superior accuracy near
walls and global modelling of some flow problems. Figure 6 shows a comparison
between the displaced log-law, Prandtl’s model and experimental measurements for
the mean turbulent flow in a pipe.

The second feature of the turbulence and shearing interaction near the wall concerns
the local effect of large inactive eddies generated in the interior of the boundary
layer as they impact on the vorticity of the high-shear region (Townsend 1976;
Hunt & Morrison 2000). Over the wavenumber range h−1 < k1 < x−1

3 where the
energy spectrum of these long eddies is dominated by the effect of mean shear, field
experiments and large-eddy simulations and linear theory (Hanazaki & Hunt 2004;
Kader & Yaglom 1991; Redelsperger, Mahe & Carlotti 2001) show that the spectrum
inside the boundary layer has the general form Eii(k1) ∼ u2

∗k
−1
1 (for i = 1, 2, 3). As

the eddies impact on the wall, they induce an irrotational blocking flow (see § 2.1) so
that

E11 ∼ E22 ∼ u2
∗k

−1
1 , E33 ∼ u2

∗x3 (4.3)

(Hunt & Carlotti 2001). The striking point about this spectrum is that the horizontal
component of the low-wavenumber turbulent eddies varies slowly with height in the
surface layer whereas the mean velocity gradient is varying rapidly (Hogstrom, Hunt
& Smedman 2002). This well-known feature of turbulent boundary layers is used by
wind engineers to differentiate between mean and fluctuating loads on tall structures.

The impact of large-scale (or ‘inactive’) highly elongated eddies on the shear layer
tends to amplify the mean vorticity which is consistent with (4.3). This mechanism
does not require any nonlinear ‘cascade’ of large-scale energy to small scales within
this shear layer to ensure an equilibrium state for the large scale turbulence. But the
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streamwise length scale of the largest of these eddies, which may be several times
greater than the boundary layer thickness, is determined by a nonlinear feedback
between the wall shear layers and the outer flow as proposed in several models of
the wall-layer dynamics, reviewed by Hunt et al. (2001). By contrast, smaller-scale
eddies (k1 > x−1

3 ) are quasi-homogeneous and their equilibrium state is determined
by a cascade of energy to smaller scales (Mann 1994).

5. Concluding remarks
Whenever turbulence is adjacent to regions where its energy is non-existent, or much

weaker, continuous fluctuating interfaces tend to form leading to intense gradients
of turbulent energy, mean velocity and concentration of scalars. Similar mechanisms
also produce interfaces and amplify mean gradients in thin regions of high shear
initiated where turbulence that has been independently generated is present on one
or both sides of the interface. In this paper approximate models have been derived to
describe these non-diffusive or counter-gradient properties of turbulence near these
interfaces. It is shown that they can have wide ranging effects on the overall flow,
particularly through controlling the entrainment processes. These mechanisms may
be more significant in flows where sharp fronts occur (e.g. in geophysical flows) than
where the turbulence dynamics are dominated by inertial and body forces. With the
aid of PIV measurement systems and numerical simulations of turbulent flows, it
is now possible to measure and compute the geometrical and statistical properties
of these interfaces, and the flows associated with them. These studies show that it
is essential to focus on the local structures of these very inhomogeneous regions of
turbulence to understand and predict many, if not most, kinds of turbulent flow. In
these regions this approach is more revealing than focussing on the average Eulerian
properties, which effectively smear out intense gradients. This implies that better
models for the statistical properties of turbulence are likely to be based on statistical
measures defined in relaion to moving interfaces. Local dynamics should be calculated
in this frame of reference. Some of the ideas reviewed here might contribute to such an
approach, which has some similarities to modern techniques in combustion modelling
using probability density functions for flame fronts and regions of intense mixing
(Pope 2000).
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